
IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55129 506

Enhancing Authentication and Encryption using

Rave and Spectra Protocols

Ritika Gupta

Department of Computer Science, Quantum School of Technology, Roorkee, India

Abstract: This paper focuses on two new technologies in the IS sector. The Rave Authentication Protocol acts as

the initiator of the Spectra encryption protocol. Both these protocols work seamlessly to authenticate BOTH the

sending and receiving parties, and provide a high level of encryption to the passed information. It is to be noted, at

the outset, that Spectra is NOT a new keying algorithm. It uses EXISTING CIPHER ALGORITHMS (on the lines of
PGP) and runs them through the Key Amplification Engine which amplifies their key strength by as much as 32

times their original key length (For example, an 8-bit key can provide security equivalent to a 256 bit encryption),

using the resources of the input key length (in this case resources used would be equivalent to an 8-bit key).

Rave and Spectra provide a very dynamic authentication and encryption mechanism which generates a DIFFERENT

cipher text EACH TIME using the same keys. This allows these technologies to fit optimally in circumstances which

require dynamic information encryption like mobile commerce (Also owing to the speed of the overall encryption

process). The technologies are also highly scalable and can accommodate keys of any length and magnify their

potential accordingly.

Keywords: Authentication, Cryptanalysis, Challenge- Response, Encryption, stream ciphers, Rave, Spectra, 3-DES,

Smart Cards.

INTRODUCTION

The Rave and Spectra authentication and encryption

protocols, are new technologies which aim towards

plugging all the major loopholes that are generally

exploited by cryptanalysts for deciphering secured

communications. Rave and Spectra add another dimension

into the encryption process which is known as the

proximity, which primarily divides to text into various

mutually determined blocks of different sizes before

encrypting it with a particular sub-key hence if the
proximity is wrong and the key is right, the secured text

will still not be comprehendible by an adversary. The

version of Rave and Spectrum explained here is geared

towards the wireless financial security marketplace (Ex.

Mobile Commerce) but the technology can be tweaked to

fit into other domains as applicable.

Rave Authentication Protocol
This version of the Rave authentication protocol follows a

variation of the challenge – response model and is

currently designed to work on a client – server architecture
only architecture only. The major advantage of Rave over

other challenge – response based technologies is that

rather than sending the corresponding response, generated

from the challenge, back to the server, it utilizes it to

initiate and configure the Spectra encryption protocol, i.e.

it acts as a ―Director‖ which decides how all subsequent

data transfers would be encrypted for the current session.

Another major advantage Rave possesses over other

similar technologies is that the challenge and response

do not share a 1:1 relation; i.e. the challenge cannot be

directly worked upon in order to generate the
corresponding response or vice versa (compared to

technologies where the response is actually the encrypted

challenge!). Rave is designed to work best on a 2 factor

authentication system where a hardware token (smart

card, SIM card, cell phone, etc.) is necessary in order to

commence the authentication phase. This greatly reduces

the risk of software key loggers acquiring and sending the

user’s passwords to the hostile user. Rave also requires a

lot of random number generation for its operation;

hence it would be necessary to note that the purity of the

generated random number would greatly affect the

overall security of the technologies.

Spectra Encryption Protocol

The Spectra encryption protocol works along with Rave to

encrypt information pertaining to the particular session. It

is important to understand, at the outset, that Spectra is

NOT a new encryption key algorithm; instead it is a better

way of using pre-existing keys which are widely used. In

other words, Spectra is not an encryption key algorithm

like the RSA or CAST; it is actually a protocol which uses

these keys differently causing the overall security of the

information to improve (For example, PGP is not a key

algorithm; instead it uses standard keys like RSA, CAST,
etc.). Another mentionable fact is that Spectra works

optimally with stream cipher algorithms (Ex. RC4) or

block cipher algorithm which do not pad the plain text to

generate the cipher text (Stream ciphers are the preferred

algorithms for telecom based application security. Hence

their applicability for Mobile Commerce and thin client

device encryption becomes further substantiated.) Spectra

could be stated as being dimensionally different from

existing encryption protocols; due to the fact that it adds

another dimension into the encryption process. Current

encryption technologies work only on 1D (one

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55129 507

dimension), in other words, the only axis within the

complete encryption process is the key that is

encrypting the information, because Key + Plain Text =

Cipher Text. Spectra adds another dimension within the

encryption process, it is known as the proximity. Spectra

divides the complete information into blocks of various

sizes (Known as proximities), determined by the reaction

generated by Rave, and then uses a different key on each

of those blocks (also determined by the reaction generated

by Rave). Therefore, in order to decrypt the document,

you would require knowledge of the key used as well as
the proximity in which the key was used.

Leading to the fact that, even if you have the right key but

the wrong proximity, you will not be able to decrypt the

information! The keys and proximities that would be

under consideration by Spectra for that particular session

would be decided by Rave at the time of

authentication and hence the keys and proximities

considered would be more or less different for each

cryptographic session. As we proceed with examples of

how Rave and Spectra operate, some of these, currently
fuzzy, concepts will become clearer.

Rave and Spectra Symbiosis

The Rave and Spectra protocols work hand-in-hand. Rave

determines how Spectra will encrypt data. The following

portion of the document displays how Rave and Spectra

authenticate and encrypt the communication session

between the client and the server (the following examples

are made to fit the mobile device a n d smart card

transaction scenarios only; other implementations may

vary) …

The Registration Process

Step 1 Registration

Before proceeding to use Rave and Spectra, a user has to

be registered to the server so that he could be granted
the credentials that would be needed to authenticate and

encrypt all subsequent transmissions. The following steps

show the registration process…

The user will be given a smart card or a mobile SIM card

which will contain, within it, the following entities.

1) The Universal Identification Number (UID).

2) The personality.

3) The current mood.

4) The user’s Key Chain.

The Universal Identification Number
The Universal identification number will be a unique
number which would be granted to each smart card or

SIM card (or any other 2
nd

factor token, inclusive of
downloadable mobile applications).

The UID is not to be confused with the credit card
number; it will be, basically, used to identify the
following statistics about the user.

a) His country of origin

b) His bank

c) His username.

Exhibit 1: The UID Number

Personality

The personality is a reference table which will be

assigned to each user upon registration. The personality

resembles a conversion table which has a numeric
representation of all characters from A → Z, a → z, 1 →

0, and the character period (.). It is to be observed that the

allocated value should be a non – repeating number from

70 → 141. An example of one such personality is shown

in Exhibit 2 below…

Exhibit 2: The Personality Table

It is not necessary that each user will have a unique
personality but the likelihood of a personality repeating

itself will be after 3*10
85

users (In an ideal situation)!
Which is a number long enough to be considered
unreachable in the foreseeable future. Taking one
character to be 1 byte in size and given the fact that the

numbers 79 → 141 lie within the unsigned short range,
which, in turn, occupies 2 bytes of memory, the complete
table would be 186 bytes in length. The personality table

is an integral part of the Rave authentication process.

The Current Mood

The mood is perhaps the only dynamic entity within Rave.

The Mood is, also, a small table which assists Rave in

depicting the Spectra directors from the generated

reactions. The Spectra directors, as explained earlier,

contain the various proximities and the index numbers of
the sub-keys which would be used to encrypt the

communication channel. Although, at this point, it would

be difficult to understand what the contents of this table

mean, I would describe the structure of the table, so that

you can refer to it when we get to its application.

Exhibit 3: Mood Table

The User Key Chain

The user key chain consists of the subkeys of the included

key. In our example we are using an 80 bit key divided

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55129 508

into 10, 8-bit subkeys.

These 10 subkeys would constitute the key chain.

Step 2 Registration

Once the pre-requisites have been programmed in the

card chip, the card is allotted to the new user. The

issuing authority will also include in the card an initial

spectrum (proximity + Keys) along with the second factor

device (referred to as token from now onwards). At this

point the user can set the password of his choice. This

password will be used by the Rave authentication protocol

for creating the Spectra director which will determine how

data communication between the client and the server

would be encrypted for the current session. Only capital
letters, small case letters, numbers and the period (.)

should constitute the password (A →Z, a → z, 1 → 0, or

period) [The period character is, generally, the most

conveniently type-able character in cell phones.]

The registration stage is the ONLY time the password will

travel through the network in an encrypted state decided

by the initial spectrum present on the token when it is

issued. Once the desired password reaches the server, the

following steps are taken…

1) The user’s corresponding Situation Table is generated.

2) The next mood table is randomly selected from the

mood bank and sent to the client. A copy of the

associated mood table is also stored in the server.

3) All instances of the user’s password are eliminated

from the server’s memory.

The Situation Table

The situation table helps generate the challenge

(henceforth known as the situation) which would be sent
to the user to initiate the authentication process. The

situation table consists of three columns (See figure

below)

Serial
Number

Character
Set

Sum Of Products
(SOPs)

Exhibit 4: The Rave Situation Table Schema

Serial Number: This column will contain the serial

number of the corresponding row containing the character

set and the SOP.

Character Set: This column will contain the position

numbers of the password’s characters which have to be

extracted for inspection. The character set would contain

10 numbers within 1 → l, where l is the length of the

password (In case of mobile commerce implementation
we can limit it to 10. The longer the password, the more

secure the system becomes!), distributed in random order

with a single such number not repeating more than twice.

It is also to be understood that all the numbers from 1 to

10 may or may not be accommodated on a single

character set. A character set will resemble the example

given below.

2537116890 (VALID)

6487215999 (INVALID)

1234567890 (VALID BUT UNLIKELY)

Sum of Products (SOP): The SOP column will contain

the sum of the products of the five pairs of numeric

equivalents of the password’s characters considered in

the corresponding character set. Supposing n’ is the

numeric equivalent of the character (obtained from the

personality table) present at the n
th

position of the

password. Then taking the VALID character set example
displayed in the ―Character Set‖ column (2537116890),

the SOP will be denoted by…

(2’*5’) + (3’*7’) + (1’*1’) + (6’*8’) + (9’*0’).

Consider the following example. Suppose the user’s

desired password is ―Im Lovin. IT‖. If we divide this

password into individual characters and look up the

corresponding conversion in the personality table, we will

obtain the following…

Exhibit 5: Sample Password Conversion Chart

Therefore, for the character set 2537116890 the

considered characters would be ―m, v, L, n, I, I, i, ., I,

T‖ the corresponding SOP would be calculated by:-

(102*84) + (79*111) + (101*101) + (81*141) + (101*108)

or,

(8568) + (8769) + (10201) + (11421) + (10908)

Hence the SOP will be 49867

For added security, the SOP column is the only column

that is going to be stored in an encrypted form within the

server. Here we can use any conventional symmetric key

mechanism for encryption rather than Spectra. To further

enforce security, the server can throw away the personality

of the user once the user registers, but doing so will

introduce some overhead in case the user wishes to change

his password at a later date.

Generating this table every time a user registers would

pose a large overhead on the registration server. In order to

increase efficiency, a pre- generated pool of numerous
such tables would be available within the registration

server. Whenever a user registers, one table from the pool

will be taken and allocated to the user. The only

calculation needed at such a scenario would be for

generating the SOPs.

Once the table generation concludes, a new mood will

be sent over to the client. The new mood is decrypted and

stored inside the token. All instances of the password are

eliminated from the server.

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55129 509

This concludes the registration session.

The Login Process

Once the registration process concludes, the user is ready

to make transactions or communicate to the server using

Rave and Spectra. During the explanation of the login

stage, many of the concepts discussed during the

registration process would get clarified. The login process

proceeds over the following steps.

Step 1 Server Side

The user initiates the authentication process by sending a

login request to the server (in some M- Commerce

modules the login request may be initiated by the server).

The user’s username (see exhibit 1) is sent to the server

along with the request. The server fetches the

corresponding situation table for the user.

Step 2 Server Side

The server generates 6 random numbers between 1 and n

(where n is the serial number of the last situation of the

table. The number of entries in the situation table can be

defined on implementation.). The server will then fetch the

character sets of the situation table corresponding to the

randomly generated serial numbers. At this moment the

server will have 6 character sets. In order to decide the

spectrum (the entity which determines where the

proximities lie and which keys are going to be used to

encrypt them), we require four Critical Mass Character

Sets (CMCS). Hence the CMCS pairs are going to be
fetched; in totality, 12 character sets (6 CMCS) are going

to be used to create 3 spectrums. The CMCS are fetched

by finding the match within the Personality Table by

scanning DOWNWARDS from the generated random

serial number, in case the randomly generated serial

number is the last in the personality table, then the counter

will loop back to the beginning. The order in which the

CMCS are fetched and later sent to the client is extremely

important. For implementation purposes, it is

recommended that the CMCS are grouped by the order

they were fetched. For example if the random numbers

that were generated were 23,50,11,31,35,6; then the
CMCS that were created were:

23 → 2511748940 & 4473660051

50 → 2283950284 & 5147663490

11 → 5748396758 & 6837198600

31 → 1758299657 & 6748210799

35 → 1966092852 & 5637212883
06 → 7281096837 & 3893567244

Critical Mass Character Sets

Recollecting from the previous section where we were

discussing what the character sets will consist of, it was

said that it was highly unlikely that a character set will

consider all the characters of the password. In this

situation Rave will be extremely prone to password

guessing attacks. Let us re- examine the character set

―2537116890‖. If we notice carefully, the character at

position ―4‖ is not considered. So if the original password

is ―ImLovin.IT‖ and we replace the character at 4th

position which is the character ―o‖ with any other

character, say, ―p‖ then the server will still grant access

because the character ―o‖ was not being considered by this

character set! To overcome this problem the concept of

―Critical Mass Character Sets (CMCS)‖ was introduced.

Critical Mass Character Sets are a pair of character sets

which, when combined, consider ALL characters of the

password. In the example stated above the CMCS would

consist of the following character set pair.

2537116890 ← The Number ―4‖ is not a part of this

character set.

1563884932 ← The Number ―4‖ is a part of this

character set.

Following are other examples of CMCS…

6448277662 & 5320118499 (Characters at position

1,3,5,9,0 were not considered in initial set.) 5382967385 &

5724760173 (Characters at position 1,4,0 were not

considered in initial set.)

Step 3 Server Side

Once the CMCS are extracted, the server will have to

create the spectrums in order to initiate the communication

session with the client. The spectrums are created by

multiplying the SOPs of the corresponding CMCS

according to the current mood. Consider the above given

character sets, their corresponding SOPs (according to the

personality provided in exhibit 2) are demonstrated below.

Exhibit 6: POS of fetched CMCS

In order to calculate the spectrum, we would have to

understand what the mood does. Let’s take, for example,

the first CMCS (2511748940 & 4473660051); whose

respective SOPs are, 53596 & 44314. To obtain the

spectrum we will have to multiply these SOPs together

according to the mood. The mood provides the method by

which the SOPs would be multiplied by referring to the
Least Significant Digit (LSD) of the individual SOPs. For

53596 the LSD is ―6‖ and for 44314 the LSD is ―4‖. Refer

to exhibit 3, the first column denotes the scenario of the

LSDs of the SOPs corresponding to the CMCS. An

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55129 510

―Even‖ LSD is denoted by a ―0‖ and an ―Odd‖ LSD is

denoted by a ―1‖. Hence if the LSDs of both the SOPs are

even then they are denoted by ―00‖ and if they are both

odd then they are denoted by ―11‖ in case any one is odd

then they are denoted by a ―10‖ or ―01‖ accordingly. The

second column of the mood denotes the Product Style. The

product style is the arrangement of the second SOP before

they are multiplied together. The mood is designated by a

number followed by a forward or backward arrow. The

number represents the numeric position to the LEFT of the

LSD. In case there is no number mentioned then
transformation of the second SOP is initiated by the LSD

itself. This is further clarified by this example.

Let’s take the first CMCS from the table in exhibit 6 viz.

2511748940 & 4473660051; their respective SOPs being

53596 & 44314. As mentioned earlier, their corresponding

LSDs are ―6‖ and ―4‖ respectively; hence the scenario
becomes ―00‖. The product style corresponding to this

scenario is given as a forward arrow without any numeric

value preceding it or ―→‖ hence the second SOP (44314)

is re-arranged by rotating clockwise from the LSD, post

transformation, the new value becomes ―44431‖. Taking

the second character set (7281096837 & 3893567244)

along with their corresponding SOPs (56661 & 46080)

and observing their LSDs, the scenario becomes ―10‖,

referring to exhibit 6 the suggested product style is ―←2‖

hence the second SOP is rendered ―06408‖. Further

examples of this concept are displayed in exhibit 7 below.

Exhibit 7: Mood Explanation

Step 4 Server Side

The above obtained operands are multiplied together to

derive the product. Two such products make a Spectrum.

Spectrum

The spectrum is the most important concept in Spectra.

The Spectrum denotes the proximities the plain text is

divided into, as well as, the keys which are going to be

used on the proximities to encrypt the plain text. Let’s

refer back to exhibit 6 which displays a list of CMCSs we

are frequently using in our examples. Let’s take the 1st

and the 2nd CMCSs (2511748940 & 4473660051,
2283950284 & 5147663490) and their respective SOPs

are 53596 & 44314, 46397 & 43813. And hence their

products become, (53596 * 44431 = 2381323876, 46397 *

31834 = 1477002098). The first obtained product

(2381323876) denotes the proximities of the plaintext and

the second obtained product (1477002098) denotes the

serial number of the 10 keys which will encrypt the

corresponding proximity of the plaintext. To further

clarify, let’s take the following example.

By observing the generated Spectrum (2381323876,

1477002098) the encryption/decryption would be brought

about in the following manner…

1) The token will form 10 blocks in its memory (Each

block should preferably be a two dimensional array

containing one column and rows adjustable to the

length of the information that needs to be encrypted.

Each field should accommodate 10 characters.)

2) The arrays will be populated according to the

proximities decided by the current spectrum…

First 2 bytes will be stored in Block 1 row 1; Next 3 bytes

will be stored in Block 2 row 1; Next 8 bytes will be

stored in Block 3 row 1; Next 1 byte will be stored in

Block 4 row 1; Next 3 bytes will be stored in Block 5 row

1; Next 2 bytes will be stored in Block 6 row 1; Next 3

bytes will be stored in Block 7 row 1; Next 8 bytes will be

stored in Block 8 row 1; Next 7 bytes will be stored in

Block 9 row 1; Next 6 bytes will be stored in Block 10
row 1;

Moving cyclically,

The next 2 bytes will be stored in Block 1 row 2; Next 3

bytes will be stored in Block 2 row 2; Next stored in Block

10 row 2;

1) This cycle will continue till the EOM (End of

Message) is reached. In case the number of characters

left in the message is lesser than the number of

characters needed to be considered according to the

proximity, the remaining characters are stored in the

designated block regardless of the length.

2) The characters of each block are concatenated

together and then encrypted by the corresponding key.

Considering the Spectrum stated above, the divisions
would 8 bytes will be stored in Block 3 row 2; Next 1

byte will be stored in Block 4 row 2; Next 3 bytes will

be stored in Block 5 row 2; Next 2 bytes will be

stored in Block 6 row 2; Next 3 bytes will be stored in

Block 7 row 2; Next 8 bytes will be stored in Block 8

row 2; Next 7 bytes will be stored in Block 9 row 2;

Next 6 bytes will be be (A plus (+) symbol

representations concatenation).

(B1 [Row 1] +B1 [Row 2] + B1 [Row 3] +

B1 [Row 4]…) is encrypted by key # 1

(B2 [Row 1] +B2 [Row 2] + B2 [Row 3] +

B2 [Row 4]…) is encrypted by key # 4 (B3 [Row 1] +B3

[Row 2] +B3 [Row 3]

+B3 [Row 4]…) is encrypted by key # 7 (B4 [Row 1] +B4

[Row 2] +B4 [Row 3]
+B4 [Row 4]…) is encrypted by key # 7 (B5 [Row 1] +B5

[Row 2] +B5 [Row 3]

+B5 [Row 4]…) is encrypted by key # 0 (B6 [Row 1] +B6

[Row 2] +B6 [Row 3]

+B6 [Row 4]…) is encrypted by key # 0 (B7 [Row 1] +B7

[Row 2] +B7 [Row 3]

+B7 [Row 4]…) is encrypted by key # 2 (B8 [Row 1] +B8

[Row 2] +B8 [Row 3]

+B8 [Row 4]…) is encrypted by key # 0 (B9 [Row 1] +B9

[Row 2] +B9 [Row 3]

+B9 [Row 4]…) is encrypted by key # 9 (B10 [Row 1]
+B10 [Row 2] +B10 [Row 3]

+B10 [Row 4]…) is encrypted by key # 8

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55129 511

3) The individual cipher texts are then divided into their

various proximities and stored back in same rows they

were initially concatenated from.

4) Finally, the complete cipher texts are concatenated to

form a single stream of cipher text. In other words, …

B1[Row 1] + B2 [Row 1] + B3 [Row 1]

+ … + B10[Row 1] + B1[Row 2] + B2 [Row 2] +… +

B10[Row 4]

5) This cipher text is encrypted 2 more times (in our

examples we are generating 3 spectrums hence the

plain text will undergo 3 passes from the engine to
render the final cipher).

Step 5 Server Side

The CMCS sent to the client would hence be:

251174894044736600512283950284514766349057

483967586837198600175829965767482107991966

092852563721288372810968373893567244

(Total size = 120 bytes, in characters).

The CMCS transmitted to the client for authentication are

collectively known as a ―Situation‖ This ends the server

side process. Once the server side processes are

understood then the client side is easy to understand

because most of the processes are the same.

Step 6 Server Side

The CMCS sent to the client would hence be:

251174894044736600512283950284514766349057
483967586837198600175829965767482107991966

092852563721288372810968373893567244

(Total size = 120 bytes, in characters).

The CMCS transmitted to the client for authentication are

collectively known as a ―Situation‖ This ends the server

side process. Once the server side processes are
understood then the client side is easy to understand

because most of the processes are the same.

This ends the server side process. Once the server side

processes are understood then the client side is easy to

understand because most of the processes are the same.

Step 1 Server Side

The CMCS are received and the Spectrums are calculated

exactly the way they were calculated by the server.

Step 2 Server Side

The entire information to be communicated will be

encrypted by Spectra. In the manner demonstrated

below… (A space is denoted by <SP> and all non-

printable characters are denoted by <SC> (or in white font

over black background)).

 <BOM>-----<SP>TransBegin<SP>-----

MerCode:0910067576\\Crncy:USD\\Amt:25.99\\Name:Harko<SP>Robroch\\CC#MC-5472-7769-2448-

7563\\Exp:10/31/2020

-----<SP>TransEnd<SP>-----<EOM>

Exhibit 8: Example Transaction (Actual Implementation may vary)

Assuming that the 10, 8-bit keys are given as under…

q 6 c & ¶ ¥ Æ ¿ s Î

 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
 0 1 2 3 4 5 6 7 8 9

The following couple of pages demonstrate the encryption process followed by Spectra for encrypting the
above given plaintext…

Loop 1:

CMCS: 2511748940 4473660051 2283950284 5147663490

SOPs: 53596 44314 46397 43813

Spectrum: Proximity Keys

2381323876 1477002098

 (Note: The total size of the array stored in the token’s memory would be 400 bytes.)

 -- ---

rn cy:

#M C-5

-<SP> Tra

<SP>TransBe g in<SP> -- --- MerCode: 0910067 576\\C

USD\\Amt : 25. 99 \\N ame:Hark o<SP>Robro ch\\CC

472-7769 - 244 8- 756 3\\Exp:1 0/31/20 20----

nsEnd<SP>-- - -- ↑ ↑ ↑ ↑ ↑

↑
Key 1

↑
Key 4

↑
Key 7

↑
Key 7

↑
Key 0

Key 0 Key 2 Key 0 Key 9 Key 8

Exhibit 9: Plain Text divided into proximities and acted upon by keys. (Pass 1)

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55129 512

This cycle will run 3 times for the 3 Spectrums created

The numbers of spectrums created can be defined upon

implementation, the more the spectrums, the higher the

security!)

The thus obtained cipher text will be divided according to

the proximities of the next spectrum and then encrypted by

the keys suggested by the next spectrum.

Loop 2:

(The actual ―Key Half‖ of the Spectrum was calculated to

be 3330087726, but since we are using stream ciphers, a

How the text will be further encrypted is depicted by

the two tables below…

Resulting Cipher Text from Loop 1:

character encrypted by the same key twice, decrypts it7,

hence in case any key index matches with the prior

Spectrum’s key index, the latter’s key index is

incremented by ―1‖. In the above example, the 5th place
index was zero for both the Key halves of the spectrum,

hence the latter’s clashing key index was incremented by

―1‖ making it 0 + 1 = 1.)

<BOM>
ÉIHƒ_¸&n¾ h²[¥!m‡õ ú□ Â®^–
YÂÿHZ3● SÂ Ç½ð1š(P· ¢CÃ] Ù[· È‖¶ ̂ ®°brÏµ|Æª™¾þ|ik•―] lþ¶ ÿß©· ßlG|}äé< tWÕÍCpz>¶–
TlfÃÔ lî]µ Zar¹ ®û€?…· {BŒ—âxøÌhÚ[àÆØ¬ø ¡ Óõv^\< aÓ
<EOM>

aB—„B²< £●µ7óZõ%µaBE¹÷µ<SC>M*à#&Ÿ0aó]Ïu ßrðZ<SC>–M●j‡åc¤û—(avó[ºi–PðÏféjxÇ]íØA‡Õý…□Ú²^ ÜÂ·¬<SC>N<SC>
Zƒ#ð÷„A rüq‘¼·j‰ô’tôÅÉÂ À·z¹‰}<SC>ÉÊú□̧ kÜ7n…"‹]<SC>äÊ {pÍ<SC>K*0

aB— „B²

-M< j‡å

Â·¬ N
kÜ7 n…"

< £ µ7 óZõ%µaB E¹÷ µ

M* à#&Ÿ0aó]Ïu

à#&Ÿ0aó]Ïu

 à#&Ÿ0aó]Ï

u

ß rðZ

c¤û—(avó[ºi– PðÏ f éjx Ç]íØA‡Õý… □Ú ²^ Ü
Zƒ#ð‚ „A rüq‘¼ ·j‰ ô ’tô ÅÉÂ À·z¹‰} É Êú□ ̧

‹] äÊ {pÍ K*0

 ↑ ↑ ↑ ↑ ↑ ↑

 ↑ ↑ ↑ ↑ Key1 Key 8 Key 7 Key Key 2 Key 6

Key 3 Key 3 Key 3 Key 0

Exhibit 10: Cipher Text from Pass 1 divided into proximities and acted upon by keys. (Pass 2)

Resulting Cipher Text from Loop 2:

sà'–ày<µ·Á·¿5ÊLŽX"ç(ç(ë˜„ûrê‚ù_%B(ù‚{ögOùfVÍ|ª˜ž‡¾@― éq ¹6Ã,‡¹ #<|<xÜ™øZj¨Á?_Òv<Op―Ø¡¨‡õ

õÖ6gÃéŠþF!k— XaÉ2#KÂv¿çk©<õq–I™áéÍç ^›A[ÂT Æ’Ë―†¹lÂV4U:

Pass 3:

CMCS: 1966092852 5637212883 7281096837 3893567244

SOPs: 50620 51396 56661 46080

Spectrum: Proximity Keys

3297336180 464183688 0

 <SC>sà'

éq

aÉ2

–à

#K

y < µ·Á·¿5Ê

6Ã,‡¹ #<

Âv¿çk©< õq

LŽX"ç(ç

| <xÜ™øZ

–I™áéÍç

(ë˜

j¨Á

^›

„ûr

?_Ò

A[Â

ê÷ù_%B

v< Op―Ø

T Æ’Ë―

(ù‚{ögOùf

¡ ¨‡ õ õÖ6

† ¹ lÂV4U:

VÍ|ª˜ž‡ ¾@―

gÃéŠþF!k—X

↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Key 0

Key 4 Key 6 Key 4 Key 1 Key 8 Key 3 Key 6 Key 8 Key 8

Exhibit 11: Cipher Text from Pass 2 divided into proximities and acted up by keys. (Pass 3)

 Step 3 Client Side

The obtained individual ciphers are recombined and sent to the receiving entity:

Exhibit 12: Final Cipher Text sent back to receiving entity

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55129 513

Upon receiving the cipher text from the client, decryption

will happen in the reverse order of encryption, for

example, Pass 3 of encryption will become Pass 1 of

decryption and so on.

Once the server successfully decrypts the cipher text

obtained by the user, it will perform the necessary actions

to complete the requested transaction. Before the current
transaction session is closed the server will send the

user another, randomly chosen mood (from the mood

bank), encrypted by the currently used spectrums.

The thus obtained plain text will authenticate the user.
Once the identity is confirmed, the acquiring agency

will perform the necessary transactions the way the credit

card company currently does.

In case the produced plain-text does not match the

required format and syntax, or, let’s just say the server

cannot successfully decrypt the cipher-text to its

corresponding plaintext, then it is obvious that there is a

mismatch between the spectrums generated by the server

(used for decrypting) and the ones the client generated to

encrypt the plaintext. A mismatch in the spectrum implies

that the user is not authentic. A mismatch could result

from any one of more of the following…

 Wrong Token.

 Wrong Password

 Wrong Mood

In case of a mismatch the server can give the client 3

more tries, the CMCS sent to the user will remain

within the client token till a successful transaction is

performed or if the server decides to scrap the bogus

session altogether. It is up to the implementer to decide

how many tries are to be granted to the user before the

user’s account is frozen. In an event of an account

freezing, the user can walk to the issuing bank’s

branch to ―Unfreeze‖ the account. The account is

unfrozen by granting a new mood/personality or

change of password (Implementer’s decision).

The client will receive the mood sent by the server,

decrypt it and store it. The next session’s spectrums would

be hence dependant on the newly allocated mood.

Scenario Style
 00 4→

 01 ←2

 10 →

 11 ←1

Exhibit 13: Example of the new mood assigned to the

client.

This concludes the current transaction. The session will
close and the currently used CMCS as well as

Spectrums would be deleted from the token’s memory. In

order to increase security, we can keep the situation from

the current transaction which will be used to create the

required spectrums to help decrypt the next set of

situation that we will receive for the next transaction. This

will ensure that the situation travels the wire in an

encrypted form, causing the hostile user to face another

step of inconvenience in trying to acquire the situation

off the wire.

CONCLUSION

 Rave and Spectra enhance the authentication and

encryption processes that are currently followed by

many of the major authentication and encryption

schemes. The key features of Rave are mentioned

below… The challenge and response do not share a 1:1

relationship.

 The response to the challenge is never sent back to the

server.

 There is no direct relationship between the Password

and the underlying keys, unlike current smart card /

token based technologies where the PIN or password

merely unlocks the underlying private key.

Salient feature of Spectra are as follows…

 Works on two dimensional encryption architecture by

the introduction of the proximity. Spectra, being two

dimensional protects the user even in case his keys are

compromised (See Appendix A for further details)

 Spectra can also fit optimally in scenarios involving

electronic payments like Electronic or mobile based

commerce by providing security even in case the card

credentials are stolen.

 Spectra allows user sharing the same symmetric keys

to still safely exchange exclusive information with

each other without the other members of the group

accessing it.

 The cipher text produced by Spectra will be different

for each session. Unlike other technologies, if we take

a plain text ‘P’ and encrypt it with Key ‘K’, we will
ALWAYS get cipher text ‘C’ which is NOT TRUE in

case of Spectra. The cipher text for each session will

be rendered differently.

Rave and Spectra are extremely flexible in their design.

They can work with block ciphers as well as stream

ciphers based on either PKI or SKI. Their passes can be

increased or decreased as per the security requirements of

the implementer. For example, if required, we can save the

previous session’s situation which can be used to

encrypt/decrypt the next session’s situation for added

security. Rave and Spectra also increase the brute force
cycles of when executed on a key of a particular size.

Various implementations of Spectra have a different

security enforcement level in order to suite its application

domain. For example in our WiFi implementation, we

Step 4 Client Side

Step 7 Server Side

Step 6 Server Side

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55129 514

actually initiate Spectra by encrypting a randomly

generated string of 256+n bytes before each transmission.

Here the additional number 'n' is actually the sum of the

LSDs of the proximity half and the keys half of all the

spectrums that are generated for the complete Spectra

procedure. For more clarification refer to the example

given below...

Consider the various spectrums from page 8 - 10 of this

white paper...

Here, the proximity and keys halves of the 3 spectrums for

the 3 passes of encryption/decryption processes are:-

2381323876; 1477002098:: LSDs = 6&8 :: 6+8 = 14

3358313024;3330187726 :: LSDs = 4&6 :: 4+6 = 10

3297336180;4641836880 :: LSDs = 0&0 :: 0+0 = 00

Hence 'n' = 14 + 10 + 00 = 24 Therefore, the initial stream

which is encrypted by Spectra BEFORE the actual

information to be encrypted will be 256 + 24 = 280 bytes

long. Once this "Dummy" stream is encrypted it is

discarded and NOT sent to the receiving entity, but the

LFSR state of RC4 encryption engine is maintained for the

complete session, making RC4's pseudo random generator

near pure and very difficult to predict. Doing so prevents

Spectra from being exploited by the WEP attacks as

narrated by Adi Shamir in one of his latest papers

exploiting the weaknesses of the 802.11 security protocols

widely used in WEP ("Weaknesses in the Key Scheduling
Algorithm of RC4'', Proceedings of Selected Areas in

Cryptography 2001, SAC'01, LNCS vol. 2259, pp. 1-24,

Springer-Verlag, 2001.) The next cryptographic session

would require the recreating of a new "Dummy" string by

the method mentioned above BEFORE encrypting the

actual information. This eliminates the necessity of the

client and server being in sync. before every cryptographic

session.

An added feature using the above mentioned technique is

that the malicious user would also have to figure out the

value of 'n' BEFORE he can try his luck in finding the

keys and the proximities thus increasing the security

manifold.

REFERENCES

[1] P. Rogaway and D. Coppersmith, ―A Software-Optimized

Encryption Algorithm‖, Proceedings of the 1993 Cambridge

Security Workshop, Springer-Verlag, 1994.

[2] B. Schneier, Applied Cryptography, Second Edition, John Wiley &

Sons, 1996.

[3] S. Vaudenay, ―Statistical Cryptanalysis of Block Ciphers -_2

Cryptanalysis‖, 1995.

[4] R. Ferreira, ―The Practical Application of State of the Art Security

in Real Environments‖

[5] Petros Mol and Stefano Tessaro,―Secret-Key Authentication

Beyond the Challenge Response Paradigm: Definational Issues and

New Protocols‖

[6] Chris Mitchell, ―Limitations of Challenge Response Entity

Authentication‖

[7] Network Security and Cryptography.

